NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps

نویسندگان

  • Alessandro Aimar
  • Hesham Mostafa
  • Enrico Calabrese
  • Antonio Rios-Navarro
  • Ricardo Tapiador-Morales
  • Iulia-Alexandra Lungu
  • Moritz B. Milde
  • Federico Corradi
  • Alejandro Linares-Barranco
  • Shih-Chii Liu
  • Tobi Delbrück
چکیده

Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though Graphical Processing Units (GPUs) are most often used in training and deploying CNNs, their power consumption becomes a problem for real time mobile applications. We propose a flexible and efficient CNN accelerator architecture which can support the implementation of SOA CNNs in low-power and low-latency application scenarios. This architecture exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows full utilization of available computing resources across a wide range of convolutional network kernel sizes; and numbers of input and output feature maps. We implemented the proposed architecture on an FPGA platform and present results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. We show how in RTL simulations in a 28nm process with a clock frequency of 500 MHz, the NullHop core is able to reach over 450 GOp/s and efficiency of 368%, maintaining over 98% utilization of the MAC units and achieving a power efficiency of over 3 TOp/s/W in a core area of 5.8 mm2. Keywords—Convolutional Neural Networks, VLSI, FPGA, computer vision, artificial intelligence

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

Texture Synthesis Using Convolutional Neural Networks

Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.01406  شماره 

صفحات  -

تاریخ انتشار 2017